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ABSTRACT

International Space Station (ISS) Electric Power System

(EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its

power system to store electrical energy. The batteries are

charged during insolation and discharged during eclipse. The
batteries are designed to operate at a 35% depth of discharge

(DOD) maximum during normal operation.

Thirty eight individual pressure vessel (IPV) Ni-H2 battery

cells are series-connected and packaged in an Orbital

Replacement Unit (ORU). Two ORUs are series-connected
utilizing a total of 76 cells, to form one battery. The ISS is the

first application for low earth orbit (LEO) cycling of this

quantity of series-connected cells.

The P6 Integrated Equipment Assembly (IEA) containing

the initial ISS high-power components was successfully
launched on November 30, 2000. The lEA contains 12 Battery

Subassembly ORUs (6 batteries) that provide station power

during eclipse periods. This paper will describe the battery

hardware configuration, operation, and role in providing power
to the main power system of the ISS. We will also discuss

initial battery start-up and performance data.

1.0 INTRODUCTION

At Assembly Complete, the ISS EPS will be powered by 24

batteries during eclipse and extended operation periods. The

battery (see Fig. 1) is designed to operate for 6.5 years with a
mean-time-between-failure (MTBF) of 5 years when run in the

reference design 35% DOD LEO regime. Typical expected

discharge currents can range from <25 Amps in a low-demand
orbit to as high as ~75 Amps to meet short peaking load

requirements at a battery operating voltage range of 76 to
s123 Vdc. The ORUs are individually fused to protect the ISS

EPS from fault propagation that could result from a cell-to-EPS

ground event. Primary charge control is accomplished by a

pressure temperature algorithm that incorporates acceptance test

data to initialize basic reference parameters.

Figure 1. ISS Batte D' Subassembly ORU

Table 1. Reference Orbit Design Parameters

Per Battery Subassembly ORU

Condition

CONTINUOUS POWER REQUIREMENTS

Constant Power Charoe 0.0 43.9

l'raoer Charae 4:_._) _57,0

TO_I (_,haree

Constant Power Discharqe 57.0 92.0
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Constant Power Charae 0.0 7._
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TheISSpowersystemis thefirston-orbituseof sucha
largequantityof series-connectedIPV Ni-H2batterycells
(38/76),in anORU/Batteryconfiguration.Previousground
testinghadbeenperformedon22IPVNiH2cellsinseries[1].
Therefore,duringtheISSprogramdevelopmentstage,it was
importantto demonstratethatthe"as-designed" battery could

be successfully run (see Table 1). This was accomplished at the
Power Systems Facility (PSF) Laboratory at NASA Glenn (then

NASA Lewis} Research Center in Cleveland, Ohio in 1992 [2].

2.0 BACKGROUND: INITIAL BATTERY

PERFORMANCE TEST SUMMARY

Two Space Station Engineering Model (EM) ORUs were

initially tested using an orbital rate capacity (ORC) test, as well
as individually LEO cycled at the 35% DOD reference orbit to

provide baseline characteristics. After completion of the

baseline testing, the hardware was configured as a "battery" by

connecting them in series and subsequently running them for

3,000 simulated ISS reference design cycles at a recharge ratio
(RR) of 1.043 (as described in Table 2). The ISS design power
requirements are specified in units of Watts and, therefore, the

cycle regime is power based. The 3,000 "peaking" cycles (see

Tables 1 and 2) were performed using the maximum discharge
power delivery requirement and a recharge regime that

incorporates a taper charge that reduces charging stress at high
states of charge (SOCs). The test was performed while

maintaining the cell sleeve temperatures at 5 + 5°C.

Table 2. ISS Simulated Peaking Reference

Design Orbit,<35% DOD, 1.043 RR

Charge

3,108 Watts

3,746 Watts

3,746 taper to 700 Watts

Discharge

4,220 Watts

6,000 Watts

57.0 Minutes (total)

7.5 minutes

36.4 minutes

13.1 minutes

35.0 Minutes (total)

27.5 minutes

7.5 minutes

Following completion of 3,000 cycles, the ORUs were
subjected to individual orbital rate capacity tests to determine

any degradation in performance.

The result is that the ORUs exceeded the ISS design

requirements for electrical performance, heat generation,
thermal uniformity, and charge management.

3.00RU DESIGN CONSIDERATIONS

Remembering that the original ISS battery design effort

began in 1988, a long-life, high-performance battery was

needed. Therefore, state-of-the-art Ni-H2 IPV chemistry was
chosen at that time, and designed to meet the following ORU
requirements:

• 6.5-year design life

• 81-Amp-hr nameplate capacity to limit the maximum
reference DOD to less than 35%

• Contingency orbit capability consisting of one

additional orbit at reduced power after a 35% DOD
without recharge

• 5-year MTBF

• Easy on-orbit replacement using the ISS robotic
interface

The cells selected for use in the Battery ORUs are
manufactured by Eagle Picher Industries. The cells are RNH-

81-5 EPI IPV NiH2, and utilize a back-to-back plate

configuration. They are activated with 31% potassium
hydroxide (KOH) electrolytes. The ORUs are assembled and

acceptance tested by Space Systemst%oral.

4.0 ISS BATTERY CONFIGURATION

The Battery Subassembly ORU, as designed and built, is

pictured below in Figs. 2 and 3.

The NiH__ cells for the current 12 ISS Battery, ORUs were

manufactured 3.5 to 4.4 years before the November 30, 2000

launch date. The flight ORUs were used for lEA systems

ground testing and final checkout, but were stored open-circuit,
discharged, and at -10 °C when they were not in use.

The 12 Battery ORUs were integrated onto the P6 lEA in

July 2000 at the Kennedy Space Center (KSC). Two ORUs in
series form one battery, for a total of 76 cells in series. These

12 ORUs form six separate batteries, with three batteries on

each of two power channels. For the P6, these power channels

are designated as 2B and 4B. During insolation, power is

supplied to the source bus by solar arrays that meet the demand

for user loads, as well as battery recharging. The batteries,

through a Battery Charge/Discharge Unit (BCDU), provide the
power to the source bus for the ISS during eclipse periods.

Each ORU contains a Battery Signal Conditioning and
Control Module (BSCCM). The BSCCM provides conditioned
battery monitoring signals from the ORU to the Local Data

Interface (LDI) located within the BCDU. Available data

includes 38 cell voltages, four pressure (strain gauge) readings,
six cell and three baseplate temperatures and are provided as an

analog multiplexed voltage. A separate signal provides ORU

total voltage output. The BSCCM also accepts and executes

NASA/TM--2001-210983 2



commandsfromtheBCDU/LDIto control ORU cell heater and

letdown functions.

/

Figure 2. Baseplate Layout - lSS Battery
Subassembly ORU

For battery charging, the BCDU conditions power from the

source bus and charges the battery at charge setpoints as

calculated from the charge algorithm (reference paragraph 6.0).

During periods of eclipse, the BCDU extracts power from the
battery, conditions this power, and supplies power to the source
bus.

Figure 3. ISS Flight Model Battery Subassembly ORU
with Cover Removed

The batteries are actively cooled using the ISS Thermal

Control System (TCS). The battery cells are assembled in an

ORU box, using a unique finned radiant heat exchanger

baseplate. The baseplate is then mounted on the IEA using
ACME screws and mated to the TCS. The TCS was designed

to maintain the Battery ORUs at a nominal operating

temperature range of 5 + 5°C (41 ± 9°F) with minimum heater

operation when run at a 35% DOD LEO regime.

5.0 ISS ON-ORBIT START-UP

The ISS batteries are launched in a discharged state. As a

result a multi-orbit start-up was necessary to begin orbital

operation. Battery charging was not begun until after solar
array deployment and thermal conditioning. System control and

operational power was supplied by the National Space

Transportation System (NSTS) Auxiliary Power Control Unit
(APCU). As a result of the limited capability of this power

source and the desire to quickly charge the batteries to 100%

SOC, heater operation and battery discharge were inhibited

during eclipse.

After thermal conditioning, which consisted of warming the

ORUs using their internal heaters to nominal operating

temperature (between 0 and 10°C), battery charging was
initiated using an initial low-rate charge of-10 Amps. This

continued until they reached a voltage of 76 Volts (! Volt per

cell average), and was followed by three consecutive insolation

periods of charging at 30 Amps. Charging was completed
during the 4 th insolation period using a programmed taper

charge. This start-up regime charged the batteries to 100%

SOC with a total input of 103 Amp-hrs. Nominal operations

were subsequently initiated and battery charge control was

provided by the temperature-pressure algorithm.

At beginning of life (BOL), total capacity of the ISS P6
batteries was measured at KSC during IEA final electrical

checkout. The battery total capacities during final lEA

checkout ranged from 83.0 to 89.9 Amp-hrs when charged

using the ISS charge algorithm.

6.0 ISS CHARGE ALGORITHM

The temperature-pressure charge algorithm provides a low-

stress charge profile that allows the initial charge current to

reach a pre-set maximum and then "tapers" (reduces current) at
a rate that is SOC dependent. This profile is designed to
maximize the use of available array power, reduce charging

stress, and minimize ORU heat generation.

Charge control of this type is necessary in order to ensure
orbit-to-orbit energy balance, since power to recharge the
batteries varies due to a combination of seasonal orbit

conditions:

• User loads

• Extravehicular activity (EVA) operations

• ISS operational scenario (i.e., locked, or non-sun-

tracking array mode)

NASA/TM--2001-210983 3



]
94% SOC "taper" begins [
(negative current = chg) 1

Figure 4: On-Orbit Data Battery Voltage, Current, and SOC

Heater cycling due to low DOD

Figure 5. On-Orbit Data Battery Temperature and Pressure
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Battery

Figure 6: On-Orbit Data, Battery ORU Monitored Cell Voltages
(4 cells per ORU 02, 08, 20, and 28)
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BOLbattery100%SOCis user set at nameplate capacity

(81 Amp-hrs). The charge algorithm calculates SOC using a

VanDerWaal's equation and a pressure vs. SOC relationship.

Basic or initial parameters taken from battery acceptance data

are used to initialize the system before flight. These parameters
include strain gauge calibration, initial moles of H2, and pounds

per square inch (PSI) per Amp-hr. During LEO operation, the

point of recharge where charge efficiency begins to noticeably

fall off is 94%. It is at this point where charge current reduction

("taper") begins.

7.0 ISS ON-ORBIT OPERATION

The ISS main power system charge algorithm has pre-set

parameters. Maximum charge rate is determined and set based
on the on-orbit operation need. Currently, a 50-Amp maximum

charge rate setpoint is employed due to operating scenarios that

feather arrays to save fuel and/or reduce the possibility of

charge build-up on the ISS structure during EVA activity. As
such, it is necessary to replenish the battery energy used during

eclipse as quickly as possible when it is available from the solar

arrays. The taper charge profile is pre-programmed in a look-
up table with the following parameters:

SOC% 20 85 90 94 96 98 1.00 1.01 >1.05

ChgRate 50 50 50 50 40 27 10 5 1

(Amps)

The above table is on-orbit programmable and can be

revised to allow optimal charge rates for changing operational
scenarios, as well as for compensation of changing battery

performance characteristics caused by aging.

8.0 ISS ON-ORBIT DATA

The ISS on-orbit data is telemetered to the ground, and is

available real time through data screens on console at the

Engineering Supports Rooms (ESRs) and the Mission Control
Center. Stored, long-term data can be accessed from the Orbiter

Data Reduction Complex (ODRC) through the consoles.
Representative on-orbit data is shown below in Figs 4, 5, and 6.

This data is for Flight Day #101 (April 11 2001). As of this

date, the batteries had completed approximately 1,600 LEO

cycles. The data depicts the three Channel 2B batteries

(60RUs). Spaces in the data are caused by data drop-out and are

not intentional omissions. The data clearly shows operational

ranges of:

• Battery voltage (76 cells) 95 to 115 Vdc

• Maximum charge rate 50 Amps (note that due to ISS

EPS conventions, charging current is shown as

negative)

• SOC ~85 to ~103% (average DOD 15%)

• ORU temperature range ~1.0 to 2.5°C (Note heater

cycling due to ISS operation at less than ORU power

design loads)

• Pressure ~580 to ~730 psi

• Cell voltages ~1.26 to ~1.5 Vdc

9.0 CONCLUSIONS

The ISS EPS is successfully maintaining power for all on-

board loads. This power is currently supplied by six NiH2
batteries (three per channel) during eclipse. The batteries are

designed for a LEO 35% DOD cycle, however, due to the low

power demands at this point in the ISS assembly phase, they

have been operating at 15% DOD. The batteries are operating
nominally and have exceeded all ISS requirements.
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the International Space Station, satellite and aircraft

power systems, flywheel technology, spacecraft on-

board propulsion, and the 'more electric' technology

(MET) insertion in spacecraft, aircraft and launch

vehicles.

Power electronic converters are central to the

performance of aerospace power systems and

spacecraft on-board electric propulsion. Resolution of

incompatibility between conventional, 400Hz

operating equipment and the variable frequency of

MET should promote increased penetration of power

electronics into aerospace systems. Future multi-

voltage needs and varied load requirements will

necessitate the use of multi-voltage level converters.

The use of electronic modules with dual-use options

and hardware commonality for aircraft and spacecraft

should reduce development cost and maximize system

re-use, while improving system reliability and

performance.
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